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while minimizing the quantity of phenotypic transitions to mitigate overfitting. The biological processes of the community Organisms Metabolites
system are captured through the following system of linear constraints:
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- We are beginning to explore the second use case of our model for exploring community behaviors in various environments. A
. : d
Cvtt,],k S bCU * btajak + coman specific goal is to identify E. coli modifications — e.g. new metabolic pathways, gene knockouts, and altered expression profiles
K — that can augment its competitive fithess with P. fluorescens in various media and growth conditions (chemostat/batch/2D
EBs,t,j — Zk (€3k X bt,j,k) — EVs,t,j e plate). These insights may then ultimately steer the community towards bioproduction capabilities, which will have
generalizable value for different and larger community systems. We are further diversifying experimental inputs such as
Es,t,j x F (' = EBs,t,j f BIOLOG data, which will resolve kinetic information for an array of experimental conditions and thereby improve predictions.
These constraints represent: biomass change in the a) non-stationary and b) stationary phenotypes; c) concentration change; We plan to begin exploring larger communities, including a 10-member Plant-Microbe Interface community from our
d) the minimum biomass fraction that transitions its phenotype; e) biomass variance; and f) the model prediction of biomass, collaborators at ORNL and gradually building towards complete microbiomes. Our data, models, and methods will finally be
Krespectlvely. Constraints a) & c) utilize Heun’s method, which is a 2nd-order Runge-Kutta integration method. y integrated into a KBase Narrative Application that should foster open-science and the rational design of microbial communities.
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